|
|
|
@@ -0,0 +1,41 @@ |
|
|
|
from __future__ import division # we need floating division |
|
|
|
from svg.path import Path, Line, Arc, CubicBezier, QuadraticBezier, parse_path |
|
|
|
import pygame |
|
|
|
|
|
|
|
""" demo of using a great python module svg.path by Lennart Regebro |
|
|
|
see site: https://pypi.org/project/svg.path/ |
|
|
|
to draw svg in pygame |
|
|
|
""" |
|
|
|
|
|
|
|
from svg.path import Path, Line, Arc, CubicBezier, QuadraticBezier, parse_path |
|
|
|
|
|
|
|
svgpath = """m 76,232.24998 c 81.57846,-49.53502 158.19366,-20.30271 216,27 61.26714, |
|
|
|
59.36905 79.86223,123.38417 9,156 |
|
|
|
-80.84947,31.72743 -125.19991,-53.11474 -118,-91 v 0 """ |
|
|
|
|
|
|
|
path = parse_path(svgpath) |
|
|
|
|
|
|
|
# svg.path point method returns a complex number p, p.real and p.imag can pull the x, and y |
|
|
|
# # on 0.0 to 1.0 along path, represent percent of distance along path |
|
|
|
n = 100 # number of line segments to draw |
|
|
|
|
|
|
|
# pts = [] |
|
|
|
# for i in range(0,n+1): |
|
|
|
# f = i/n # will go from 0.0 to 1.0 |
|
|
|
# complex_point = path.point(f) # path.point(t) returns point at 0.0 <= f <= 1.0 |
|
|
|
# pts.append((complex_point.real, complex_point.imag)) |
|
|
|
|
|
|
|
# list comprehension version or loop above |
|
|
|
pts = [ (p.real,p.imag) for p in (path.point(i/n) for i in range(0, n+1))] |
|
|
|
|
|
|
|
pygame.init() # init pygame |
|
|
|
surface = pygame.display.set_mode((700,600)) # get surface to draw on |
|
|
|
surface.fill(pygame.Color('white')) # set background to white |
|
|
|
|
|
|
|
pygame.draw.aalines( surface,pygame.Color('blue'), False, pts) # False is no closing |
|
|
|
pygame.display.update() # copy surface to display |
|
|
|
|
|
|
|
while True: # loop to wait till window close |
|
|
|
for event in pygame.event.get(): |
|
|
|
if event.type == pygame.QUIT: |
|
|
|
exit() |