| @@ -0,0 +1,41 @@ | |||||
| from __future__ import division # we need floating division | |||||
| from svg.path import Path, Line, Arc, CubicBezier, QuadraticBezier, parse_path | |||||
| import pygame | |||||
| """ demo of using a great python module svg.path by Lennart Regebro | |||||
| see site: https://pypi.org/project/svg.path/ | |||||
| to draw svg in pygame | |||||
| """ | |||||
| from svg.path import Path, Line, Arc, CubicBezier, QuadraticBezier, parse_path | |||||
| svgpath = """m 76,232.24998 c 81.57846,-49.53502 158.19366,-20.30271 216,27 61.26714, | |||||
| 59.36905 79.86223,123.38417 9,156 | |||||
| -80.84947,31.72743 -125.19991,-53.11474 -118,-91 v 0 """ | |||||
| path = parse_path(svgpath) | |||||
| # svg.path point method returns a complex number p, p.real and p.imag can pull the x, and y | |||||
| # # on 0.0 to 1.0 along path, represent percent of distance along path | |||||
| n = 100 # number of line segments to draw | |||||
| # pts = [] | |||||
| # for i in range(0,n+1): | |||||
| # f = i/n # will go from 0.0 to 1.0 | |||||
| # complex_point = path.point(f) # path.point(t) returns point at 0.0 <= f <= 1.0 | |||||
| # pts.append((complex_point.real, complex_point.imag)) | |||||
| # list comprehension version or loop above | |||||
| pts = [ (p.real,p.imag) for p in (path.point(i/n) for i in range(0, n+1))] | |||||
| pygame.init() # init pygame | |||||
| surface = pygame.display.set_mode((700,600)) # get surface to draw on | |||||
| surface.fill(pygame.Color('white')) # set background to white | |||||
| pygame.draw.aalines( surface,pygame.Color('blue'), False, pts) # False is no closing | |||||
| pygame.display.update() # copy surface to display | |||||
| while True: # loop to wait till window close | |||||
| for event in pygame.event.get(): | |||||
| if event.type == pygame.QUIT: | |||||
| exit() | |||||